

# Waste Heat Recovery Power Generator

Ahmet Durmaz TMEIC Corporation Houston, Texas, USA

TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION

< Confidential to TMEIC Corporation>

#### Introduction – Why recover waste heat?

#### **Current Situation**

- Increasing energy prices and CO<sub>2</sub> emission controls
- 20-50% of industrial energy consumption released as waste heat
- Proven technology

#### Industry changes

- Mandate for "Green facility & footprint"
- Convert waste heat into monetary value in the form of electricity
- Can be applied to several industrial applications

Huge potential in waste heat recovery <u>although not known</u> As other alternative energy types like solar, wind, biomass



### Waste heat sources in an Oil & Gas complex

#### **DIESEL ENGINES:**

- Typical Diesel Engine Shaft Power Efficiency : ~ 40-45%
- Exhaust Temperature: 850 950 ° F
- Exhaust Gas Thermal Loss: ~ 30-35%
- Jacket Cooling Thermal Loss: ~ 15-20%

#### **GAS TURBINES:**

- Typical Gas Turbine Shaft Power Efficiency : ~ 40-45%
- Exhaust Temperature: 800 -900 ° F
- Exhaust Gas Thermal Loss: ~ 50-55%



# **Organic Rankine Cycle (ORC) Generator**

#### **BASIC COMPONENTS OF ORC UNIT**



#### **ORC Power Generator Unit**



Units are available from 250 kW up to 10 MW



### **ORC System Properties**

- Working fluid R245fa or Silicon based depending on the resource temperature
- Heat source: Hot water or Thermal Oil 195–580F (91° 305° C)
- Cooling requirement: Water 39F–109F (4° 43° C)
- Controls: PLC with Remote monitoring Web-based gateway
  Operation
- Designed for unattended operation
- Enclosure Not required



#### Waste Heat Recovery & Power Generator





# Waste heat recovery diagram for Gas turbines & Diesel Engines



Proprietary to TMEIC Co

TMEIC We drive industry

#### **Sample data for Gas Turbines**

- Turbine Shaft Power: 10,000 HP (7457 kW)
- Exhaust Waste Heat Recovery : 9,750kW
- Net ORC power : ~ 2243 kW (at 23% efficiency)
- Thermal Oil: ORC inlet 570F / ORC outlet 410F (300C / 210C)
- Thermal Oil Flow: ~ 102 lbs/sec (46 kg/sec)
- Cooling Water : inlet 81F / Outlet 108F or (27 C / 42C)
- Cooling Water Flow: ~ 1900 GPM (430 m3/h)
- Heat Exchanger Size : 33.2 MMBTU

# ~30% of Turbine Shaft Power



#### **ORC Payback calculations**



# **ORC Advantages**

- Auto Start/Stop
- Ability to work with low temperature heat source
- Partial load capability down to 10% power with high efficiency
- Low maintenance, no operator required for operation
- Design life ~ 20 years
- Quiet Operation
- High availability > 98%

# **Application Examples**



Proprietary to TMEIC Corporation

Page 12

### **Other ORC applications**



Page 13

#### ORC generator slab furnace evaporative cooling application





#### **Recent Heat Recovery Project in Turkey**

Recovery from slab furnace evaporative cooling system:

- Installed power capacity 1 MW
- Resource Temperature : 140C
- In operation since September 2011
- Typical waste steam was about 16 tons/hour



#### **Recent Heat Recovery Project in Turkey**





# **Recent Heat Recovery Project in Turkey**



#### BEFORE

**AFTER** 

#### NO MORE WASTE OF STEAM



Proprietary to TMEIC Corporation

Page 17

# **Recent Heat Recovery Project Pictures**





# **Recent Heat Recovery Project Pictures**





#### **Recent Heat Recovery Project Pictures**



